

SUPERFICI CERAMICHE A N T I V I R A L I il punto della situazione

Società Ceramica Italiana

Via Volturno, 7 40121 Bologna info@icers.it

Orientamento dell'attività antibatterica: definizioni e metodi per la determinazione

CARLA SABIA

Università degli studi di Modena e Reggio Emilia Dipartimento Scienze della Vita

Norme ISO

JIS Z 2801:2000 — ISO 22196:2006-2011 ISO 27447:2009-2019

3 Termini e definizioni

3.1

Antibatterico

Termine che descrive uno stato nel quale la crescita dei batteri sulle superfici dei prodotti viene soppressa o l'effetto di un agente che sopprime la crescita dei batteri sulle superfici dei prodotti.

3.2

Agente antibatterico

Agente che inibisce la crescita dei batteri sulle superfici dei prodotti mediante l'uso di un trattamento antibatterico della superficie o un agente composto

3.3

Attività antibatterica

Differenza nel logaritmo del conteggio delle cellule vive trovate su un prodotto trattato con un antibatterico ed un prodotto non trattato dopo l'inoculazione e l'incubazione dei batteri.

3.4

Efficacia antibatterica

Capacità di un agente antibatterico di inibire la crescita dei batteri sulla superficie trattata con l'agente, determinata in base al valore dell'attività antibatterica.

Agente che uccide i batteri o ne impedisce lo sviluppo.

Agente in grado di interferire con la crescita e la moltiplicazione batterica.

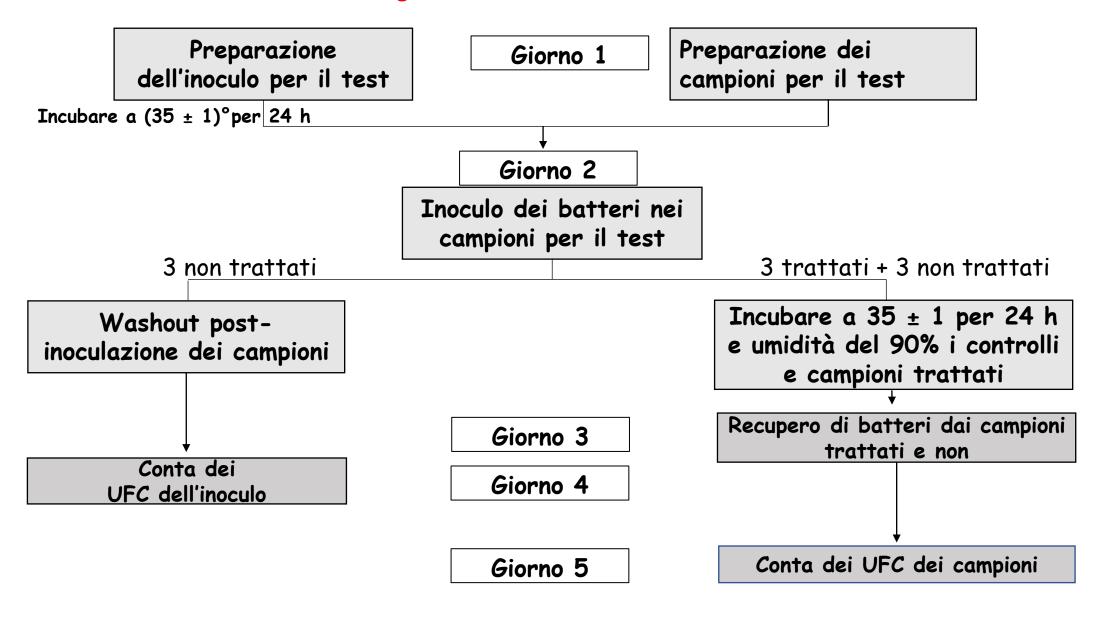
Battericida: qualsiasi agente in grado di uccidere i batteri

Batteriostatico: Agente in grado di limitare la replicazione batterica senza uccidere il microorganismo

ISO 22196: 2006- 2011

4 Materiali

4.1 Batteri da usare per i test


Usare entrambe le seguenti specie di batteri:

- a) Staphylococcus aureus
- b) Escherichia coli

Nome	Серро
Staphylococcus aureus	ATCC 6538P
	CIP 53. 156
	DSM 346
	NBRC 12732
	NCIB 8625
Escherichia coli	ATCC 8739
	CIP 53. 126
	DSM 1576
	NBRC 3972
	NCIB 8545

Il test dovrà essere effettuato su almeno tre campioni per ciascun materiale trattato. Sono richiesti inoltre almeno sei campioni del materiale non trattato. Metà dei campioni non trattati vengono usati per misurare le cellule vive immediatamente dopo l'inoculazione, mentre l'altra metà viene usata per misurare le cellule vive dopo un'incubazione di 24 ore.

Diagramma di flusso del metodo

8 Espressione dei risultati

8.1 Determinazione del numero di batteri vivi

$$N=(C \times D \times V)$$

N: il numero dei batteri recuperati dal campione

C: conteggio medio delle piastre

D: diluizione V: volume in ml

8.2 Condizioni di validità del test

Il test si considera valido se sono soddisfatte, rispettivamente, le tre condizioni

Il valore logaritmico del numero di batteri vivi recuperati immediatamente dopo l'inoculazione dai campioni non trattati dovrà soddisfare il seguente requisito:

(Lmax - Lmin)/(Lmedio) ≤ 0,2

Lmax è il logaritmo in base 10 del numero massimo di batteri vivi trovato in un campione Lmin è il logaritmo comune del numero minimo di batteri vivi trovati in un campione Lmedio è il logaritmo comune del numero medio di batteri vivi trovati sui campioni

- Il numero medio di batteri vivi recuperati immediatamente dopo l'inoculazione dai campioni non trattati dovrà essere compreso tra 6.2×10^3 cellule/cm² e 2.5×10^4 UFC/cm²
- Il numero di batteri vivi recuperati da ciascun campione non trattato dopo un'incubazione di 24 ore non dovrà essere inferiore a 6.2×10^1 UFC/cm².

8.3 Calcolo dell'attività antibatterica

Una volta che il test è considerato valido, calcolare l'attività antibatterica mediante l'Equazione e registrarne il risultato fino ad una cifra decimale.

R= Ut - At

R= Attività antibatterica

Ut= è la media del logaritmo comune del numero di batteri vivi, recuperata dai campioni non trattati dopo 24h

At= è la media del logaritmo comune del numero di batteri vivi, recuperata dai campioni trattati dopo 24 ore

B2		- : ×	√ fx	=1-(100/POTENZA(10;A2))/100							
4	Α	В	С	D	Е	F					
1	R	%									
2	1	90,00000%									
3	2	99,00000%									
4	3	99,90000%									
5	4	99,99000%									
6	5	99,99900%									
7	6	99,99990%									
8	7	99,99999%									
9											

8.4 Efficacia dell'agente antibatterico

Il valore dell'attività antibatterica può essere usato per definire l'efficacia di un agente antibatterico. I valori dell'attività antibatterica usati per determinare l'efficacia di un agente antibatterico devono essere convenuti da tutte le parti interessate.

Attività antimicrobica: espressione del risultato Non dimentichiamoci l'incertezza

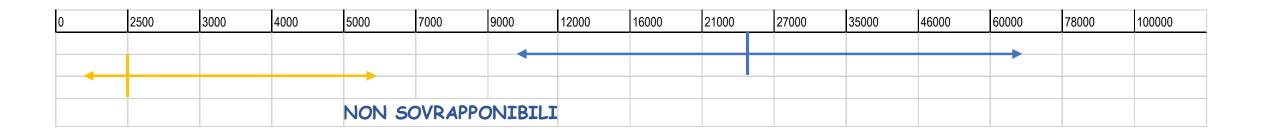
La normativa di riferimento per l'espressione dell'incertezza di misura in ambito microbiologico è la ISO 19036, che indica il risultato associandovi un errore pari al doppio dello scarto tipo derivante da prove di riproducibilità intra laboratorio su quel metodo.

Le metodiche utilizzate per gli studi sull'attività antimicrobica spesso non sono normate o quantomeno valutate in ripetibilità e riproducibilità.

Una delle norme maggiormente citate e presa a riferimento, la JIS Z 2801:2000, come si evince dall'allegato B della ISO 22196.

SR 0,2 ESEMPIO 1

	ESITO	Lim Inf	Lim Sup
Campione non trattato dopo 24h (ufc/cm²)	25000	10000	63000
Campione trattato dopo 24h (ufc/cm²)	5000	2000	13000


Ut	4,40	
At	3,70	
R	0,70	80%

0	2500	3000	4000	5000	7000	9000	12000	16000	21000	27000	35000	46000	60000	78000	100000
					SOV	RAPPON	IBILI								

ESEMPIO 2

	ESITO	Lim Inf	Lim Sup
Campione non trattato dopo 24h (ufc/cm²)	25000	10000	63000
Campione trattato dopo 24h (ufc/cm²)	2500	1000	6300

Ut	4,40	
At	3,40	
R	1,00	90%

ESEMPIO 3

	ESITO	Lim Inf	Lim Sup
Campione non trattato dopo 24h (ufc/cm²)	25000	10000	63000
Campione trattato dopo 24h (ufc/cm²)	250	100	600

Ut	4,40	
At	2,40	
R	2,00	99%

0	100	200	250	500	1000	1500	2000	2500	3000	4000	5000	7000	9000	12000	16000	21000	27000	35000	46000	60000	78000	100000	9500	10000

NON SOVRAPPONIBILI

ISO 21702:2019 Misura dell'attività antivirale su materie plastiche e altre superfici non porose

ISO 18071:2016

Determinazione dell'attività antivirale dei materiali fotocatalitici semiconduttori in ambiente di illuminazione interna - Metodo di prova usando batteriofago Q-beta

